(本题14分)在中,已知(1)求角C;(2)若,求的最大值.
已知算法:(1)指出其功能(用算式表示),
(2)将该算法用流程图描述.
(文)如图,|AB|=2,O为AB中点,直线过B且垂直于AB,过A的动直线与交于点C,点M在线段AC上,满足=. (I)求点M的轨迹方程; (II)若过B点且斜率为- 的直线与轨迹M交于点P,点Q(t,0)是x轴上任意一点,求当ΔBPQ为锐角三角形时t的取值范围.
(理)已知数列{an}的前n项和,且=1,. (I)求数列{an}的通项公式; (II)已知定理:“若函数f(x)在区间D上是凹函数,x>y(x,y∈D),且f’(x)存在,则有 < f’(x)”.若且函数y=xn+1在(0,+∞)上是凹函数,试判断bn与bn+1的大小; (III)求证:≤bn<2.
(文)已知:函数f(x)= (a>1) (1) 证明:函数f(x)在(-1,+∞ )上为增函数; (2)证明方程f(x)=0没有负根.
(理)如图,|AB|=2,O为AB中点,直线过B且垂直于AB,过A的动直线与交于点C,点M在线段AC上,满足=. (1)求点M的轨迹方程; (2)若过B点且斜率为- 的直线与轨迹M交于点P,点Q(t,0)是x轴上任意一点,求当ΔBPQ为锐角三角形时t的取值范围.