(本小题满分10分)某班组织的数学文化节活动中,通过抽奖产生了名幸运之星.这名幸运之星可获得、两种奖品中的一种,并规定:每个人通过抛掷一枚质地均匀的骰子决定自己最终获得哪一种奖品,抛掷点数小于的获得奖品,抛掷点数不小于的获得奖品.(1)求这名幸运之星中获得奖品的人数大于获得奖品的人数的概率;(2)设、分别为获得、两种奖品的人数,并记,求随机变量的分布列及数学期望.
(本小题满分12分)已知函数. (1)若为函数的极值点,求实数的值; (2)若时,方程有实数根,求实数的取值范围.
(本小题满分12分)中,角的对边分别为,已知点在直线上. (1)求角的大小; (2)若为锐角三角形且满足,求实数的最小值。
(本小题满分10分)已知函数,且当时,的最小值为2, (1)求的单调递增区间; (2)先将函数的图象上的点纵坐标不变,横坐标缩小到原来的,再把所得的图象向右平移个单位,得到函数的图象,求方程在区间上所有根之和.
已知定义在R上的奇函数 满足 ,且 时,,给出下列结论: ①;②函数在 上是增函数; ③函数的图像关于直线x=1对称; ④若 ,则关于x的方程在[-8,16]上的所有根之和为12. 则其中正确的命题为_________.
(本小题满分12分)设函数. (1)若函数在处有极值,求函数的最大值; (2)①是否存在实数,使得关于的不等式在上恒成立?若存在,求出的取值范围;若不存在,说明理由; ②证明:不等式