(本小题满分12分)在△ABC中,角A,B,C的对边分别为a,b,c,且sinA+sinB=2sinC,a=2b.(Ⅰ)证明:△ABC是钝角三角形;(Ⅱ)若,求c的值.
如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG为△SAB上的高,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF的位置关系,并给予证明.
如图所示,四边形EFGH为空间四边形ABCD的一个截面,若截面为平行四边形.(1)求证:AB∥平面EFGH,CD∥平面EFGH.(2)若AB=4,CD=6,求四边形EFGH周长的取值范围.
如图所示,平面∥平面,点A∈,C∈,点B∈,D∈,点E,F分别在线段AB,CD上,且AE∶EB=CF∶FD.(1)求证:EF∥;(2)若E,F分别是AB,CD的中点,AC=4,BD=6,且AC,BD所成的角为60°,求EF的长.
已知P为△ABC所在平面外一点,G1、G2、G3分别是△PAB、△PCB、△PAC的重心.(1)求证:平面G1G2G3∥平面ABC;(2)求S△∶S△ABC.
如图所示,正方体ABCD—A1B1C1D1中,侧面对角线AB1,BC1上分别有两点E,F,且B1E=C1F.求证:EF∥平面ABCD.