(本小题满分12分)已知函数.(1)若函数,求函数的单调区间;(2)设直线为函数的图像上点处的切线,证明:在区间上存在唯一,直线与曲线相切.
如图,已知正方体ABCD-A1B1C1D1的棱长为2,点P,Q,R分别是棱AB,CC1,D1A1的中点. (1)求证:B1D^平面PQR; (2)设二面角B1-PR-Q的大小为q,求|cosq|.
一个口袋中装有大小和质地都相同的白球和红球共7个,其中白球个数不少于红球个数.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为随机变量X.若P(X=2)=. (1)求口袋中的白球个数; (2)求X的概率分布与数学期望.
选修4—5:不等式选讲 解不等式:∣2x-1∣+3x>1.
选修4—4:坐标系与参数方程 在极坐标系中,已知直线l:rcos(q+)=,圆C:r=4cosq,求直线l被圆C截得的弦长.
选修4—2:矩阵与变换