(本小题满分12分)已知函数.(1)若函数,求函数的单调区间;(2)设直线为函数的图像上点处的切线,证明:在区间上存在唯一,直线与曲线相切.
设是各项都为正数的等比数列, 是等差数列,且, (Ⅰ)求数列,的通项公式; (Ⅱ)设数列的前项和为,求数列的前项和.
四名教师被分到甲、乙、丙三所学校参加工作,每所学校至少一名教师. (Ⅰ)求、两名教师被同时分配到甲学校的概率; (Ⅱ)求、两名教师不在同一学校的概率; (Ⅲ)设随机变量为这四名教师中分配到甲学校的人数,求的分布列和数学期望.
已知函数(其中>0),且函数的最小正周期为. (Ⅰ)求的值; (Ⅱ)求函数在区间上的最大值和最小值.
在数列中,对于任意,等式:恒成立,其中常数. (1)求的值; (2)求证:数列为等比数列; (3)如果关于的不等式的解集为,试求实数的取值范围.
某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙,地面利用原地面均不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,屋顶每平方米造价20元. (1)仓库面积的最大允许值是多少? (2)为使面积达到最大而实际投入又不超过预算,正面铁栅应设计为多长?