(本小题满分13分)如图,椭圆:()和圆:,已知圆将椭圆的长轴三等分,椭圆右焦点到直线的距离为,椭圆的下顶点为,过坐标原点且与坐标轴不重合的任意直线与圆相交于点、. (Ⅰ)求椭圆的方程; (Ⅱ)若直线、分别与椭圆相交于另一个交点为点、. ①求证:直线经过一定点;
y
②试问:是否存在以为圆心,为半径的圆,使得直线和直线都与圆相交?若存在,请求出所有的值;若不存在,请说明理由.
若的图像关于直线对称,其中. (Ⅰ)求的解析式; (Ⅱ)已知,求的增区间; (Ⅲ)将的图像向左平移个单位,再将得到的图像的横坐标变为原来的2倍(纵坐标不变)后得到的的图像;若函数的图像与的图像有三个交点,求的取值范围.
设数列的前项和为,且满足,,求数列的通项公式;
已知函数f(x)=在与x=1时都取得极值 (1)求a、b的值与函数f(x)的单调区间 (2)若对xÎ[-1,2],不等式f(x)<恒成立,求c的取值范围。
已知. (1)求的值;(2)求函数的值域
已知函数 (1)若,试讨论函数在区间上的单调性; (2)若函数在处取得极值1,求在区间上的最大值.