(本小题满分13分)如图,椭圆:()和圆:,已知圆将椭圆的长轴三等分,椭圆右焦点到直线的距离为,椭圆的下顶点为,过坐标原点且与坐标轴不重合的任意直线与圆相交于点、. (Ⅰ)求椭圆的方程; (Ⅱ)若直线、分别与椭圆相交于另一个交点为点、. ①求证:直线经过一定点;
y
②试问:是否存在以为圆心,为半径的圆,使得直线和直线都与圆相交?若存在,请求出所有的值;若不存在,请说明理由.
已知点P到两个定点M(-1,0),N(1,0)的距离的比为。(1)求证点P在一定圆上,并求此圆圆心和半径;(2)若点N到直线PM的距离为1,求直线PN的方程。
设(1)若对任意的成立,求实数b的取值范围;(2)若存在成立,求实数b的取值范围。
设为数列的前n项和,,其中k是常数。(Ⅰ)求;(Ⅱ)若对于任意的成等比数列,求k的值。
在△ABC中,已知边上的中线BD=,求sinA的值。
已知函数(且).(Ⅰ)当时,求证:函数在上单调递增;(Ⅱ)若函数有三个零点,求t的值;(Ⅲ)若存在x1,x2∈[﹣1,1],使得,试求a的取值范围.注:e为自然对数的底数。