(本小题满分13分)如图,椭圆:()和圆:,已知圆将椭圆的长轴三等分,椭圆右焦点到直线的距离为,椭圆的下顶点为,过坐标原点且与坐标轴不重合的任意直线与圆相交于点、. (Ⅰ)求椭圆的方程; (Ⅱ)若直线、分别与椭圆相交于另一个交点为点、. ①求证:直线经过一定点;
y
②试问:是否存在以为圆心,为半径的圆,使得直线和直线都与圆相交?若存在,请求出所有的值;若不存在,请说明理由.
在正三棱柱ABC-A1B1C1中,若BB1=1,AB=,求AB1与C1B所成角的大小。
分已知函数是上的奇函数,且(1)求的值(2)若,,求的值(3)若关于的不等式在上恒成立,求的取值范围
直线:,圆方程为(1)求证:直线和圆相交(2)当圆截直线所得弦最长时,求的值(3)直线将圆分成两个弓形,当弓形面积之差最大时,求直线方程
设,其中为常数(1)为奇函数,试确定的值(2)若不等式恒成立,求实数的取值范围
如图,在四棱锥中,底面是边长为的正方形, ,且点满足 . (1)证明:平面 . (2)在线段上是否存在点,使得平面?若存在,确定点的位置,若不存在请说明理由 .