直线:,圆方程为(1)求证:直线和圆相交(2)当圆截直线所得弦最长时,求的值(3)直线将圆分成两个弓形,当弓形面积之差最大时,求直线方程
已知的展开式中,某一项的系数是它前一项系数的2倍,而等于它后一项的系数的.(1) 求该展开式中二项式系数最大的项;(2) 求展开式中系数最大的项.
如图,直四棱柱ABCD—A1B1C1D1的高为3,底面是边长为4且∠DAB = 60°的菱形,ACBD = O,A1C1B1D1 = O1,E是O1A的中点.
已知函数.(1) 若在x = 0处取得极值为 – 2,求a、b的值;(2) 若在上是增函数,求实数a的取值范围.
设集合,若,求实数a的取值范围.
已知函数. (1) 若函数的图象在点P(1,)处的切线的倾斜角为,求实数a的值; (2) 设的导函数是,在 (1) 的条件下,若,求的最小值. (3) 若存在,使,求a的取值范围.