若数列满足:对于,都有(为常数),则称数列是公差为的“隔项等差”数列.(Ⅰ)若,是公差为8的“隔项等差”数列,求的前项之和;(Ⅱ)设数列满足:,对于,都有.①求证:数列为“隔项等差”数列,并求其通项公式;②设数列的前项和为,试研究:是否存在实数,使得成等比数列()?若存在,请求出的值;若不存在,请说明理由.
如图,四棱锥中,侧面是边长为2的正三角形,底面是菱形,,点在底面上的射影为的重心,点为线段上的点.(1)当点为的中点时,求证:平面;(2)当平面与平面所成锐二面角的余弦值为时,求的值.
在中,角,,所对的边分别为,,,已知(1)求角的大小; (2)若,求的取值范围.
已知函数,.(1)若,过点作曲线的切线,求的方程;(2)若曲线与直线只有一个交点,求实数的取值范围.
如图,椭圆()经过点,且离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)经过点,且斜率为的直线与椭圆交于不同两点,(均异于点),证明:直线与的斜率之和为.
在等差数列中,,,其前项和为.(Ⅰ)求数列的通项公式;(Ⅱ)设数列满足,求数列的前项和.