为赢得2010年广州亚运会的商机,某商家最近进行了新科技产品的市场分析,调查显示,新产品每件成本9万元,售价为30万元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:万元,)的平方成正比,已知商品单价降低2万元时,一星期多卖出24件.(1)将一个星期的商品销售利润表示成的函数;(2)如何定价才能使一个星期的商品销售利润最大?
已知正方形ABCD所在平面与正方形ABEF所在平面互相垂直,M为AC上一点,N为BF 上一点,且有,设 (1) 求证:; (2) 求证: ; (3) 当为何值时,取最小值?并求出这个最小值.
已知方程. (Ⅰ)若此方程表示圆,求的取值范围; (Ⅱ)若(Ⅰ)中的圆与直线相交于M,N两点,且OMON(O为坐标原点)求的值; (Ⅲ)在(Ⅱ)的条件下,求以MN为直径的圆的方程.
已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且 (Ⅰ)求证:不论λ为何值,总有平面BEF⊥平面ABC; (Ⅱ)当λ为何值时,平面BEF⊥平面ACD? (14分)
如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=a. (1)求证:MN∥平面PAD; (2)求证:平面PMC⊥平面PCD
已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点. (1)当l经过圆心C时,求直线l的方程; (2)当弦AB被点P平分时,写出直线l的方程