(本小题满分16分)已知函数(是不同时为零的常数),导函数为.(1)当时,若存在,使得成立,求的取值范围;(2)求证:函数在内至少有一个零点;(3)若函数为奇函数,且在处的切线垂直于直线,关于的方程,在上有且只有一个实数根,求实数的取值范围.
:已知函数. (Ⅰ)若,令函数,求函数在上的极大值、极小值; (Ⅱ)若函数在上恒为单调递增函数,求实数的取值范围.
:等差数列的各项均为正数,其前项和为,满足,且. ⑴求数列的通项公式; ⑵设,求数列的最小值项.
:已知,对:和是方程的两个根,不等式对任意实数恒成立;:函数有两个零点,求使“且”为真命题的实数的取值范围。
如图,以为始边作角,它们的终边分别与单位圆相交于点P、Q,已知点P的坐标为 (1)求的值; (2)若求的值.
已知函数. (I)当时,求函数的定义域; (II)若关于的不等式的解集是,求的取值范围