(本小题满分16分)设各项均为正数的数列的前项和为,满足,且恰好是等比数列的前三项.(1)求数列、的通项公式; (2)记数列的前项和为,若对任意的,恒成立,求实数的取值范围.
函数和为实常数)是奇函数,设在上的最大值为. ⑴求的表达式; ⑵求的最小值.
已知函数的图象过原点,,,函数y=f(x)与y=g(x)的图象交于不同两点A、B。(1)若y=F(x)在x=-1处取得极大值2,求函数y=F(x)的单调区间;(2)若使g(x)=0的x值满足,求线段AB在x轴上的射影长的取值范围;
已知函数(1)求函数的最大值;(2)当时,求证;
函数()的图象关于原点对称,、分别为函数的极大值点和极小值点,且|AB|=2,.(Ⅰ)求的值;(Ⅱ)求函数的解析式;(Ⅲ)若恒成立,求实数的取值范围.
在平面直角坐标系中,O为坐标原点,已知点,,若点C满足,点C的轨迹与抛物线交于A、B两点.(I)求证:;(II)在轴正半轴上是否存在一定点,使得过点P的任意一条抛物线的弦的长度是原点到该弦中点距离的2倍,若存在,求出m的值;若不存在,请说明理由.