【原创】设,其中.(1)若无极值,求的取值范围;(2)若当,恒成立,求的取值范围.
(本小题满分13分)图2中的实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD是边长为1的正方形.若向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是 . (1)从正方形ABCD的四条边及两条对角线共6条线段中任取2条线段(每条线段被取到的可能性相等),求其中一条线段长度是另一条线段长度的倍的概率; (2)求此长方体的体积.
(本小题满分13分)如图是学校从走读生中随机调查200名走读生早上上学所需时间(单位:分钟)样本的频率分布直方图. (1)学校所有走读生早上上学所需要的平均时间约是多少分钟? (2)根据调查,距离学校500米以内的走读生上学时间不超过10分钟,距离学校1000米以内的走读生上学时间不超过20分钟.那么,距离学校500米以内的走读生和距离学校1000米以上的走读生所占全校走读生的百分率各是多少?
(本小题满分12分)已知直线经过两条直线和的交点. (1)若直线平行于直线,求直线的方程; (2)若直线垂直于直线,求直线的方程.
(本小题满分13=5+5+3分)已知点是圆内一点(C为圆心), 过P点的动弦AB. (1)如果, , 求弦AB所在直线方程. (2)如果, 当最大时, 求直线的方程. (3)过A、B作圆的两切线相交于点, 求动点的轨迹方程.
(本小题满分14分)已知四棱柱ABCD-A1B1C1D1的底面ABCD是边长为2的菱形, AC∩BD="O," AA1=2, BD⊥A1A, ∠BAD=∠A1AC="60°," 点M是棱AA1的中点. (1)求证: A1C∥平面BMD; (2)求证: A1O⊥平面ABCD; (3)求直线BM与平面BC1D所成角的正弦值.