某学校从参加高一年级期末考试的学生中抽出20名学生,将其成绩(均为整数)分成六段,, ,后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(Ⅰ)求第四小组的频率,并补全这个频率分布直方图;(Ⅱ)估计这次考试的及格率(60分及以上为及格)和平均分;(Ⅲ)从成绩是80分以上(包括80分)的学生中选两人,求他们在同一分数段的概率.
(本小题满分12分)已知,其中,,. (Ⅰ)求的单调递减区间; (Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c,,,且向量与共线,求边长b和c的值.
(本题13分)已知函数,其中为实数. (1)求函数的极大值点和极小值点; (2)已知函数的图象在处的切线与轴平行,.且对任意,存在,使得,求实数的最小值(其中为自然对数的底数).
(本题13分)若抛物线:的准线为,椭圆:的一个焦点与抛物线的焦点重合,且以原点为圆心,椭圆的短半轴长为半径的圆与直线相切. (1)求椭圆的离心率; (2)若为坐标原点,过点(2,0)的直线与椭圆相交于不同两点A、B,且椭圆上一点满足,求实数的取值范围.
(本题13分)已知数列中,,,当时,. (1)求证为等比数列,并求数列的通项公式; (2)若若,,试求实数、的取值范围.
(本题12分)如图,在三棱锥A-BCD中,底面BCD是边长为2的等边三角形,侧棱AB=AD=,AC=2,O、E、F分别是BD、BC、AC的中点. (1)求证:EF∥平面ABD; (2)求证:AO⊥平面BCD; (3)求异面直线AB与CD所成角的余弦值.