△中,角的对边分别为,且 (Ⅰ)求 ; (Ⅱ)若且 ,求△面积最大值.
如图,在四棱锥中,底面为矩形,. (1)求证,并指出异面直线PA与CD所成角的大小; (2)在棱上是否存在一点,使得?如果存在,求出此时三棱锥与四棱锥的体积比;如果不存在,请说明理由.
已知数列为等比数列,其前n项和为,且满足,成等差数列. (1)求数列的通项公式; (2)已知,记,求数列前n项和.
设函数. (1)求的值域; (2)记△ABC的内角A,B,C的对边长分别为a,b,c,若,求a的值.
定义:若在上为增函数,则称为“k次比增函数”,其中. 已知其中e为自然对数的底数. (1)若是“1次比增函数”,求实数a的取值范围; (2)当时,求函数在上的最小值; (3)求证:.
已知椭圆的离心率,且直线是抛物线的一条切线. (1)求椭圆的方程; (2)点P 为椭圆上一点,直线,判断l与椭圆的位置关系并给出理由; (3)过椭圆上一点P作椭圆的切线交直线于点A,试判断线段AP为直径的圆是否恒过定点,若是,求出定点坐标;若不是,请说明理由.