(本小题13分)某食品厂定期购买面粉,已知该厂每天需要面粉6吨,每吨面粉价格为1800元,面粉的保管费为平均每天每6吨18元(从面粉进厂起开始收保管费,不足6 吨按6 吨算),购面粉每次需要支付运费900元,设该厂每天购买一次面粉。(注:该厂每次购买的面粉都能保证使用整数天)(Ⅰ)计算每次所购买的面粉需支付的保管费是多少?(Ⅱ)试求值,使平均每天所支付总费用最少?并计算每天最少费用是多少?
若都是正实数,且.求证:与中至少有一个成立.
已知曲线在处的切线方程是. (1)求的解析式; (2)求曲线过点的切线方程.
如图,有一块正方形区域ABCD,现在要划出一个直角三角形AEF区域进行绿化,满足:EF=1米,设角AEF=θ,θ,边界AE,AF,EF的费用为每米1万元,区域内的费用为每平方米4 万元. (1)求总费用y关于θ的函数. (2)求最小的总费用和对应θ的值.
已知为坐标原点,=(),=(1,),. (1)若的定义域为[-,],求y=的单调递增区间; (2)若的定义域为[,],值域为[2,5],求的值.
已知0<x<.,sin(-x)=,求的值.