如图,有一段河流,河的一侧是以O为圆心,半径为米的扇形区域OCD,河的另一侧是一段笔直的河岸l,岸边有一烟囱AB(不计B离河岸的距离),且OB的连线恰好与河岸l垂直,设OB与圆弧的交点为E.经测量,扇形区域和河岸处于同一水平面,在点C,点O和点E处测得烟囱AB的仰角分别为,和.(1)求烟囱AB的高度;(2)如果要在CE间修一条直路,求CE的长.
如图,矩形所在的平面与直角梯形所在的平面互相垂直,∥,. (1)求证:平面∥平面; (2)若,求证.
如图,直三棱柱 中,,,,点分别为和的中点. (1)证明:∥平面; (2)求三棱锥的体积.
如图所示,四棱锥中,底面是边长为2的菱形,是棱上的动点. (1)若是的中点,求证://平面; (2)若,求证:; (3)在(2)的条件下,若,,,求四棱锥的体积.
如图,平行四边形中,,,且,正方形和平面垂直,是的中点. (1)求证:平面; (2)求证:∥平面; (3)求三棱锥的体积.
如图所示,ABCD是一块边长为100 m的正方形地皮,其中AST是一半径为90 m的扇形小山,其余部分都是平地.一开发商想在平地上建一个矩形停车场,使矩形的一个顶点P在上,相邻两边CQ、CR落在正方形的边BC、CD上.求矩形停车场PQCR面积的最大值和最小值.