(本小题满分13分)某运动队拟在2015年3月份安排5次体能测试,规定:依次测试,只需有一次测试合格就不必参加后续的测试.已知运动员小刘5次测试每次合格的概率依次构成一个公差为的等差数列,他第一次测试合格的概率不超过,且他直到第二次测试才合格的概率为.(Ⅰ)求小刘第一次参加测试就合格的概率;(Ⅱ)在小刘参加第一、第二次测试均不合格的前提下,记小刘参加后续测试的次数为,求随机变量的分布列和数学期望.
已知函数f(x)=2cos2x+sin2x-4cosx. (1)求f()的值; (2)求f(x)的最大值和最小值.
是否存在锐角α、β,使得(1)α+2β=,(2)tan·tanβ=2-同时成立?若存在,求出锐角α、β的值;若不存在,说明理由.
设tanα,tanβ是方程ax2-(2a+1)x+(a+2)=0的两根,求证:tan(α+β)的最小值是-.
化简:tan(18°-x)tan(12°+x)+[tan(18°-x)+tan(12°+x)].
已知sinα+sinβ=,cosα+cosβ=,求cos2的值.