(文科)已知抛物线的顶点为原点,其焦点到直线:的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.(Ⅰ)求抛物线的方程;(Ⅱ)当点为直线上的定点时,求直线的方程;(Ⅲ)当点在直线上移动时,求的最小值.
设函数(1)求的值;(2)若,求的取值范围. (3)写出对称中心.
做投掷2颗骰子试验,用(x,y)表示点P的坐标,其中x表示第1颗骰子出现的点数,y表示第2颗骰子出现的点数.(I)求点P在直线y = x上的概率; (II)求点P满足x+y10的概率;
平面向量已知∥,,(1)求向量和向量(2)求夹角。
已知, ,为锐角,求 (1)的值.(2)的值.
(本小题满分14分)设是定义在[-1,1]上的偶函数,的图象与的图象关于直线对称,且当x∈[ 2,3 ] 时, 222233.(1)求的解析式;(2)若在上为增函数,求的取值范围;(3)是否存在正整数,使的图象的最高点落在直线上?若存在,求出的值;若不存在,请说明理由.