(理科)设椭圆E: (a,b>0)过M(2,),N(,1)两点,O为坐标原点,(Ⅰ)求椭圆E的方程;(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。
(本小题6分)已知直线l在两坐标轴上的截距相等,且点到直线的距离为,求直线的方程.
(本小题10分). 如图,设椭圆(a>b>0)的右焦点为F(1,0),A为椭圆的上顶点,椭圆上的点到右焦点的最短距离为-1.过F作椭圆的弦PQ,直线AP,AQ分别交直线于点M,N. (Ⅰ) 求椭圆的方程; (Ⅱ) 求当三角形AMN面积最小时直线PQ的方程.
(本小题9分). 如图所示,⊥平面,,,为中点. (1)证明:; (2)若与平面所成角的正切值为,求二面角--的正弦值.
(本小题8分). 已知圆: 和圆外一点(1, ), (1)若直线经过原点,且圆上恰有三个点到直线的距离为,求直线的方程; (2)若经过的直线与圆相切,切点分别为,求切线的方程及两切点所在的直线方程.
(本小题7分).如图,在四棱锥中,底面是正方形,侧棱,,是的中点,交于点. (1)证明//平面; (2)证明⊥平面; (3)求.