安庆迎江区农民张大伯为了致富奔小康,大力发展家庭养殖业,他准备用40米长的木栏围一个矩形的养圈,为了节约材料,同时要使矩形面积最大,他利用了自己家房屋一面长25米的墙,设计了如图一个矩形的养圈。(1)请你求出张大伯设计的矩形养圈的面积。(2)请你判断他的设计方案是否使矩形养圈的面积最大?如果不是最大,应怎样设计?请说明理由。
解不等式组,并把解集在数轴上表示出来.
已知二次函数的图象与y轴的交点为C,与x轴正半轴的交点为A,且tan∠ACO=. (1)求二次函数的解析式; (2)P为二次函数图象的顶点,Q为其对称轴上的一点,QC平分∠PQO,求Q点坐标; (3)是否存在实数、(),当时,y的取值范围为?若存在,直接写在、的值;若不存在,说明理由.
如图,四边形ABCD内接于⊙O,AD∥BC,P为BD上一点,∠APB=∠BAD. (1)AB=CD; (2)DP•BD=AD•BC; (3).
如图,一次函数的图象与反比例函数的图象交于A(﹣1,m)、B(n,﹣1)两点. (1)求一次函数的解析式; (2)求△AOB的面积.
如图,△ABC中,∠ACB=90°,D.E分别是BC、BA的中点,联结DE,F在DE延长线上,且AF=AE. (1)求证:四边形ACEF是平行四边形; (2)若四边形ACEF是菱形,求∠B的度数.