(本小题满分12分)某学校有男老师45名,女老师15名,按照分层抽样的方法组建了一个4人的学科攻关小组。(1)求某老师被抽到的概率及学科攻关小组中男、女老师的人数; (2)经过一个月的学习、讨论,这个学科攻关小组决定选出2名老师做某项实验,方法是先从小组里选出1名老师做实验,该老师做完后,再从小组内剩下的老师中选1名做实验,求选出的2名老师中恰有1名女老师的概率.
有时可用函数述学习某学科知识的掌握程度.其中表示某学科知识的学习次数(),表示对该学科知识的掌握程度,正实数a与学科知识有关(1)证明:当x 7时,掌握程度的增长量f(x+1)- f(x)总是下降;(2)根据经验,学科甲、乙、丙对应的a的取值区间分别为(115,121],(121,127](127,133].当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.
某商品每件成本9元,售价为30元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,)的平方成正比,已知商品单价降低2元时,一星期多卖出24件.(I)将一个星期的商品销售利润表示成的函数;(II)如何定价才能使一个星期的商品销售利润最大?
(本小题满分12分)已知函数的图象为曲线, 函数的图象为直线.(Ⅰ) 当时, 求的最大值;(Ⅱ) 设直线与曲线的交点的横坐标分别为, 且, 求证: .
(本小题满分12分)已知函数为偶函数. (Ⅰ) 求的值;(Ⅱ) 若方程有且只有一个根, 求实数的取值范围.