(本小题满分12分)某中学在高二年级开设大学先修课程《线性代数》,共有50名同学选修,其中男同学30名,女同学20名.为了对这门课程的教学效果进行评估,学校按性别采用分层抽样的方法抽取5人进行考核.(1)求抽取的5人中男、女同学的人数;(2)考核前,评估小组打算从抽取的5人中随机选出2名同学进行访谈,求选出的两名同学中恰有一名女同学的概率.
已知函数(为实数). (1)当时,求函数在处的切线方程; (2)求在区间上的最小值; (3)若存在两不等实根,使方程成立,求实数的取值范围.
已知椭圆,,为椭圆的两个焦点,M为椭圆上任意一点,且构成等差数列,过椭圆焦点垂直于长轴的弦长为3, (1)求椭圆E的方程; (2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E恒有两个交点A,B,且,求出该 圆的方程.
已知四棱锥,其中,,面,,为的中点. (1)求证:面; (2)求证:面面; (3)求四棱锥的体积.
某市举行了“高速公路免费政策”满意度测评,共有1万人参加了这次测评(满分100分,得分全为整数).为了解本次测评分数情况,从中随机抽取了部分人的测评分数进行统计,整理见下表:
(1)求出表中的值; (2)若分数在(含60分)的人对“高速公路免费政策”表示满意,现从全市参加了这次满意度测评的人中随机抽取一人,求此人满意的概率; (3)请你估计全市的平均分数.
设函数. (1)当时,解不等式; (2)若的解集为,,求证:.