(本小题满分14分)已知、是椭圆的两个焦点,O为坐标原点,点在椭圆上,线段与轴的交点满足;⊙O是以F1F2为直径的圆,一直线l:与⊙O相切,并与椭圆交于不同的两点A、B.(Ⅰ)求椭圆的标准方程;(Ⅱ)当且满足时,求△AOB面积S的取值范围.
已知各项均为正数的数列的前项和为,且对任意的,都有。(1)求数列的通项公式;(2)若数列满足,且cn=anbn,求数列的前 项和;(3)在(2)的条件下,是否存在整数,使得对任意的正整数,都有,若存在,求出的值;若不存在,试说明理由.
已知二次函数,不等式的解集为.(1)求的解析式; (2)若函数在上单调,求实数的取值范围;(3)若对于任意的x∈[-2,2],都成立,求实数n的最大值.
某种汽车购买时费用为16.9万元,每年应交付保险费、汽油费费用共1.5万元,汽车的维修费用为:第一年0.4万元,第二年0.6万元,第三年0.8万元,依等差数列逐年递增.(1)设该车使用n年的总费用(包括购车费用)为试写出的表达式;(2)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).
△ABC中,分别为角A、B、C所对的边,已知,(1)求的值; (2)若,求△ABC的面积.
等差数列的前项和为,.(1)求数列的通项公式;(2)令,求.