的三个内角依次成等差数列.(Ⅰ)若,试判断的形状;(Ⅱ)若为钝角三角形,且,求的取值范围.
设函数 f ( x ) = ln x + ln ( 2 - x ) + a x , ( a > 0 ) . (1)当 a = 1 时,求 f ( x ) 的单调区间; (2)若 f ( x ) 在 ( 0 , 1 ] 上的最大值为 1 2 ,求 a 的值.
某迷宫有三个通道,进入迷宫的每个人都要经过一个智能门,首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止.令 ξ 表示走出迷宫所需的时间. (1)求 ξ 的分布列; (2)求 ξ 的数学期望.
已知函数. (1)当时,求在区间上的取值范围; (2)当时,,求的值.
设函数 f x = 2 x - 4 + 1 . (Ⅰ)画出函数 y = f x 的图像: (Ⅱ)若不等式 f x ≤ a x 的解集非空,求 n 的取值范围.
已知直线 C 1 : x = 1 + t cos α y = t sin α t 为常数 , C 2 : x = cos θ y = sin θ θ 为常数
I (当 a = π 3 时,求 C 1 与 C 2 的交点坐标, ( I I ) 过坐标原点O做 C 1 的垂线,垂足为 A 、 P 为 O A 的中点,当 a 变化时。