已知四棱锥的底面是平行四边形,,,面,且.若为中点,为线段上的点,且.(1)求证:平面;(2)求PC与平面PAD所成角的正弦值.
已知向量,,设函数. (Ⅰ)求函数的解析式,并求在区间上的最小值; (Ⅱ)在中,分别是角的对边,为锐角,若,,的面积为,求.
已知函数,其图象为曲线,点为曲线上的动点,在点处作曲线的切线与曲线交于另一点,在点处作曲线的切线. (Ⅰ)当时,求函数的单调区间; (Ⅱ)当点时,的方程为,求实数和的值; (Ⅲ)设切线、的斜率分别为、,试问:是否存在常数,使得?若存在,求出的值;若不存在,请说明理由.
已知椭圆的中心在原点,焦点在轴上,离心率,它的一个顶点恰好是抛物线的焦点. (Ⅰ)求椭圆的方程; (Ⅱ)设椭圆与曲线的交点为、,求面积的最大值.
如图,在四棱锥中, 平面,,,. (Ⅰ)求证:平面; (Ⅱ)求棱锥的高.
已知数列中,点在直线上,且. (Ⅰ)求证:数列是等差数列,并求; (Ⅱ)设,数列的前项和为,,成立,求实数的取值范围.