如图,已知圆,经过椭圆的右焦点F及上顶点B,过圆外一点倾斜角为的直线交椭圆于C,D两点,(1)求椭圆的方程;(2)若右焦点F在以线段CD为直径的圆E的外部,求m的取值范围.
(本小题满分14分) 已知数列的一个极值点。 (1)证明:数列是等比数列; (II)求数列的通项公式; (III)设,求证:
(本小题满分13分)已知点,直线:,为平面上的动点,过点作直线的垂线,垂足为,且.(1)求动点的轨迹的方程; (2)已知点A(m,2)在曲线C上,过点A作曲线C的两条弦AD,AE,且AD,AE的斜率k1、k2满足,试推断:动直线DE是否过定点?证明你的结论。
(本小题满分12分)已知函数. (1)当时,求函数的单调区间和极值; (2)当时,试求方程根的个数.
(本小题满分12分)如图,在直三棱柱中,,,,,E在上,且,分别为的中点. (1)求证:平面; (2)求异面直线与所成的角; (3)求点到平面的距离.
(本小题满分12分)要建造一个容积为2000,深为5的长方体无盖蓄水池,池壁的造价为95,池底的造价为135,若水池底的一边长为,水池的总造价为元。(1)把水池总造价表示为的函数。(2)当水池的长为多少时,水池的总造价最少?