如图所示,正方形与矩形所在平面互相垂直,,点E为的中点.(Ⅰ)求证:;(Ⅱ)求证:;(III)在线段AB上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.
(本题14分)已知△ABC中,角A,B,C,所对的边分别是a,b,c,且2(a2+b2-c2)=3ab. (1)求cosC; (2)若c=2,求△ABC面积的最大值.
(本题14分)已知P(2,1),直线l:x-y+4=0. (1)求过点P与直线l平行的直线方程; (2)求过点P与直线l垂直的直线方程.
已知两条不同直线m,l,两个不同平面α,β,给出下列命题: ①若l垂直于α内的两条相交直线,则l⊥α; ②若l//α,则l平行于α内的所有直线; ③若mα,lβ且l⊥m,则α⊥β; ④若lβ,l⊥α,则α⊥β; ⑤若mα,lβ且α//β,则m//l. 其中正确命题的序号是.(把你认为正确命题的序号都填上)
过抛物线的对称轴上的定点,作直线与抛物线相交于两点 (1)试证明两点的纵坐标之积为定值; (2)若点是定直线上的任一点,试探索三条直线的斜率之间的关系,并给出证明.
设函数,,其图象在点处的切线与直线垂直,导函数的最小值为. (Ⅰ)求的值; (Ⅱ)求函数的单调递增区间,并求函数在上的最大值和最小值.