(本小题满分12分)已知椭圆的离心率为,直线被以椭圆的短轴为直径的圆截得弦长为,抛物线以原点为顶点,椭圆的右焦点为焦点.(Ⅰ)求椭圆与抛物线的方程; (Ⅱ)已知,是椭圆上两个不同点,且⊥,判定原点到直线的距离是否为定值,若为定值求出定值,否则,说明理由.
设函数是定义在R上的非常值函数, 且对任意的有. (1)证明:; (2)设,若在R上是单调增函数,且,求实数的取值范围.
已知,若的充分不必要条件,求实数的取值范围。
画出的图象,并利用图象回答:实数为何值时,方程无解?有一解?有两解?
(本小题满分12分) 已知数列中,(为常数),为的前项和,且是与的等差中项. (Ⅰ)求; (Ⅱ)求数列的通项公式; (Ⅲ)若且,为数列的前项和,求的值.
(本小题满分12分) 在数列中,已知 (Ⅰ)求证:数列是等比数列; (Ⅱ)求数列的通项公式; (Ⅲ)求数列的前项和