(本小题满分14分)下图是一块平行四边形园地ABCD,经测量,AB=20m,BC=10m,∠ABC=120°.拟过线段AB上一点E设计一条直路EF(点F在四边形ABCD的边上,不计路的宽度),将该园地分为面积之比为3:1的左、右两部分分别种植不同花卉.设EB=x,EF=y(单位:m).(Ⅰ)当点F与点C重合时,试确定点E的位置;(Ⅱ)求y关于x的函数关系式;(Ⅲ)请确定点E,F的位置,使直路EF长度最短.
在一次购物抽奖活动中,假设某10张奖券中有一等奖卷1张,可获价值50元的奖品;有二等奖卷3张,每张可获价值10元的奖品;其余6张没有奖。某顾客从这10张中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X(元)的分布列和数学期望。
已知函数. (Ⅰ)若为定义域上的单调增函数,求实数的取值范围; (Ⅱ)当时,求函数的最大值; (Ⅲ)当时,且,证明:.
已知两定点E(-2,0),F(2,0),动点P满足,由点P向x轴作垂线段PQ,垂足为Q,点M满足,点M的轨迹为C. (1)求曲线C的方程 (2)过点D(0,-2)作直线与曲线C交于A、B两点,点N满足 (O为原点),求四边形OANB面积的最大值,并求此时的直线的方程.
已知函数 (I)当a=18时,求函数的单调区间; (II)求函数在区间上的最小值.
已知函数. (1)求函数的单调区间 (2)函数的图象在处切线的斜率为若函数在区间(1,3)上不是单调函数,求m的取值范围