已知等比数列{}的前项和为,且满足.(1)求的值及数列{}的通项公式;(2)若数列{}满足,求数列{}的前和.
已知函数,R. (1)求函数的单调区间; (2)是否存在实数,使得函数的极值大于?若存在,求的取值范围;若不存 在,说明理由.
已知向量, (1)求及; (2)若函数的最小值为,求的值.
设函数的定义域为,对任意的实数都有;当时,,且.(1)判断并证明在上的单调性; (2)若数列满足:,且,证明:对任意的,
已知函数(其中为正常数,)的最小正周期为. (1)求的值; (2)在△中,若,且,求.
设是公比大于1的等比数列,为数列的前项和,已知,且构成等差数列. (1)求数列的通项公式; (2)令,求数列的前项和.