已知函数y=f(x)=.(1)求函数y=f(x)的图象在x=处的切线方程;(2)求y=f(x)的最大值;(3)设实数a>0,求函数F(x)=af(x)在[a,2a]上的最小值.
已知的三个内角所对的边分别为,是锐角,且. (Ⅰ)求的度数; (Ⅱ)若,的面积为,求的值.
设,曲线在点处的切线与直线垂直. (1)求的值; (2) 若,恒成立,求的范围. (3)求证:
设是抛物线上相异两点,到y轴的距离的积为且. (1)求该抛物线的标准方程. (2)过Q的直线与抛物线的另一交点为R,与轴交点为T,且Q为线段RT的中点,试求弦PR长度的最小值.
现有甲、乙两个靶.某射手向甲靶射击两次,每次命中的概率为,每命中一次得1分,没有命中得0分;向乙靶射击一次,命中的概率为,命中得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击. (I)求该射手恰好命中两次的概率; (II)求该射手的总得分的分布列及数学期望;
已知数列满足,,数列满足. (1)证明数列是等差数列并求数列的通项公式; (2)求数列的前n项和.