在三棱锥P-ABC中,D为AB的中点。(1)与BC平行的平面PDE交AC于点E,判断点E在AC上的位置并说明理由如下:(2)若PA=PB,且△PCD为锐角三角形,又平面PCD⊥平面ABC,求证:AB⊥PC。
(本小题满分13分) 设数列为等差数列,且a5=14,a7=20。 (I)求数列的通项公式; (II)若
(本小题满分13分) 某市近郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米. (1)分别写出用表示和的函数关系式(写出函数定义域); (2)怎样设计能使取得最大值,最大值为多少?
(本小题满分12分) 已知下列三个方程:至少有一个方程有实数根,求实数的取值范围.
(本小题满分12分) 已知,命题函数在上单调递减,命题曲线与轴交于不同的两点,若为假命题,为真命题,求实数的取值范围.
(本小题满分12分) 在中,角、、的对边分别为、、,且满足. (1)求角的大小; (2)当时,求的面积.