设集合P={1,2,3,4,5},对任意k∈P和正整数m,记f(m,k)=,其中[a]表示不大于a的最大整数。求证:对任意正整数n,存在k∈P和正整数m,使得f(m,k)=n。
(本小题满分12分) 设椭圆的左、右焦点分别为F1、F2,A是椭圆C上的一点,,坐标原点O到直线AF1的距离为 (1)求椭圆C的方程; (2)设Q是椭圆C上的一点,过点Q的直线交轴于点,交轴于点M,若,求直线的斜率.
(本小题满分12分)如图,四边形ABCD为矩形,四边形ADEF为梯形,AD//FE,∠AFE=60º,且平面ABCD⊥平面ADEF,AF=FE=AB==2,点G为AC的中点. (1)求证:EG//平面ABF; (2)求三棱锥B-AEG的体积; (3)试判断平面BAE与平面DCE是否垂直?若垂直,请证明;若不垂直,请说明理由.
(本小题满分12分)为调查银川市某校高中生是否愿意提供志愿者服务,用简单随机抽样方法从该校调查了50人,结果如下:
(1)用分层抽样的方法在愿意提供志愿者服务的学生中抽取6人,其中男生抽取多少人? (2)在(1)中抽取的6人中任选2人,求恰有一名女生的概率; (3)你能否有99%的把握认为该校高中生是否愿意提供志愿者服务与性别有关? 下面的临界值表供参考:
独立性检验统计量其中
(本小题满分12分)设为数列{}的前n项和,已知,,N (1)求,,并求数列的通项公式; (2)求数列{}的前项和.
(本小题满分l0分)选修4—5:不等式选讲 已知,不等式的解集为M. (1)求M; (2)当时,证明:.