已知过点(0,1)的直线l与曲线C:交于两个不同点M和N。求曲线C在点M、N处切线的交点轨迹。
(本小题满分12分)为调查高三学生的视力情况,某高中学生会从全体学生中随机抽取16名学生,经校医用视力表检测得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶),如图,若视力测试结果不低于5.0,则称为“好视力”。 (1)写出这组数据的众数和中位数; (2)从这16人中随机选取3人,求至少有2人是“好视力”的概率; (3)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记X表示抽到“好视力”学生的人数,求X的分布列及数学期望。
(本小题满分12分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA=AD=1,AB=,点E为PD的中点,点F在棱DC上移动。(1)当点F为DC的中点时,试判断EF与平面PAC的位置关系,并说明理由;(2)求证:无论点F在DC的何处,都有PF⊥ AE(3)求二面角E-AC-D的余弦值。
(本小题满分12分)已知等差数列满足:a3=7,a5+a7 =26,的前n项和为Sn. (1)求及Sn; (2)令 ,求数列的前n项和Tn.
(满分14分)设函数,曲线在点处的切线方程是(Ⅰ)求的解析式;(Ⅱ)证明:函数的图象是一个中心对称图形,并求其对称中心;(Ⅲ)证明:曲线上任意一点的切线与直线和直线所围成的三角形的面积是定值,并求出这个定值.
(满分13分)已知函数.(Ⅰ)若在点处的切线的斜率是,求实数的值;(Ⅱ)若在点处取得极值,求的单调区间.