如图,某生态园将一三角形地块ABC的一角APQ开辟为水果园种植桃树,已知角A为的长度均大于200米,现在边界AP,AQ处建围墙,在PQ处围竹篱笆.(1)若围墙AP,AQ总长度为200米,如何围可使得三角形地块APQ的面积最大?(2)已知AP段围墙高1米,AQ段围墙高1.5米,造价均为每平方米100元.若围围墙用了20000元,问如何围可使竹篱笆用料最省?
已知函数 f ( x ) = x e 2 x + c ( e = 2 . 71828 . . . 是自然对数的底数, c ∈ R ). (Ⅰ)求 f ( x ) 的单调区间、最大值; (Ⅱ)讨论关于 x 的方程 ln x = f ( x ) 根的个数。
设等差数列 a n 的前 n 项和为 S n ,且 S 4 = 4 S 2 , a 2 n = 2 a n + 1 . (Ⅰ)求数列 a n 的通项公式; (Ⅱ)设数列 b n 的前 n 项和为 T n , T n + a n + 1 2 n = λ ( λ 为常数),令 c n = b 2 n ( n ∈ N * ) ,求数列 c n 的前 n 项和 R n .
甲 、 乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是 1 2 外,其余每局比赛甲队获胜的概率都是 2 3 .假设各局比赛结果相互独立. (Ⅰ)分别求甲队以 3 : 0 , 3 : 1 , 3 : 2 胜利的概率; (Ⅱ)若比赛结果为求 3 : 0 或 3 : 1 ,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分 、 对方得1分.求乙队得分 X 的分布列及数学期望.
如图所示,在三棱锥 ∆ P A Q 中, P B ⊥ 平面 A B Q , B A = B Q = B P , D , C , E , F 分别是 A Q , B Q , A P , B P 的中点, A Q = 2 B D , P D 与 E Q 交于 G , P C 与 F Q 交于点 H ,连接 G H .
(Ⅰ)求证: A B ▱ G H ; (Ⅱ)求二面角 D - G H - E 的余弦值.
设 ∆ A B C 的内角 A , B , C 所对的边分别为 a , b , c ,且 a + c = 6 , b = 2 , cos B = 7 9 .
(Ⅰ)求 a , c 的值; (Ⅱ)求 sin A - B 的值.