甲 、 乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是 1 2 外,其余每局比赛甲队获胜的概率都是 2 3 .假设各局比赛结果相互独立. (Ⅰ)分别求甲队以 3 : 0 , 3 : 1 , 3 : 2 胜利的概率; (Ⅱ)若比赛结果为求 3 : 0 或 3 : 1 ,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分 、 对方得1分.求乙队得分 X 的分布列及数学期望.
已知数列为等差数列,且.为等比数列,数列的前三项依次为3,7,13。求 (1)数列,的通项公式;(2)数列的前项和。
已知曲线的参数方程为(为参数),曲线的极坐标方程为. (1)将曲线的参数方程化为普通方程,将曲线的极坐标方程化为直角坐标方程; (2)曲线,是否相交,若相交请求出公共弦的长,若不相交,请说明理由。
已知函数. (1)试判断在上的单调性; (2)当时,求证:函数的值域的长度大于(闭区间[m,n]的长度定义为n-m).
设p在[0,5]上随机地取值,求方程有实根的概率。
.在集合内任取一个元素,能使代数式的概率是多少?