(本小题满分12分)已知等比数列的公比,,,等差数列中,,其中.(1)求数列,的通项公式;(2)设数列,求数列的前项和.
(本小题满分10分) 选修4-4:坐标系与参数方程 已知在直角坐标系中,圆锥曲线的参数方程为(为参数),定点,是圆锥曲线的左,右焦点. (Ⅰ)以原点为极点、轴正半轴为极轴建立极坐标系,求经过点且平行于直线的直线的极坐标方程; (Ⅱ)在(I)的条件下,设直线与圆锥曲线交于两点,求弦的长.
(本小题满分10分)选修4-1:几何证明选讲 如图,直线经过⊙上的点,并且⊙交直线于,,连接. (Ⅰ)求证:直线是⊙的切线; (Ⅱ)若⊙的半径为,求的长.
(本小题满分12分) 已知函数(,),. (Ⅰ)证明:当时,对于任意不相等的两个正实数、,均有成立; (Ⅱ)记, (ⅰ)若在上单调递增,求实数的取值范围; (ⅱ)证明:.
(本小题满分12分) 已知椭圆:,分别为左,右焦点,离心率为,点在椭圆上,,,过与坐标轴不垂直的直线交椭圆于两点. (Ⅰ)求椭圆的方程; (Ⅱ)在线段上是否存在点,使得以线段为邻边的四边形是菱形?若存在,求出实数的取值范围;若不存在,说明理由.
((本小题满分12分) 改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村到年十年间每年考入大学的人数.为方便计算,年编号为,年编号为,…,年编号为.数据如下: (Ⅰ)从这年中随机抽取两年,求考入大学人数至少有年多于人的概率; (Ⅱ)根据前年的数据,利用最小二乘法求出关于的回归方程,并计算第年的估计值和实际值之间的差的绝对值.