如图,某市新体育公园的中心广场平面图如图所示,在y轴左侧的观光道曲线段是函数,时的图象且最高点B(-1,4),在y轴右侧的曲线段是以CO为直径的半圆弧.(1)试确定A,和的值;(2)现要在右侧的半圆中修建一条步行道CDO(单位:米),在点C与半圆弧上的一点D之间设计为直线段(造价为2万元/米),从D到点O之间设计为沿半圆弧的弧形(造价为1万元/米).设(弧度),试用来表示修建步行道的造价预算,并求造价预算的最大值?(注:只考虑步行道的长度,不考虑步行道的宽度)
某网络营销部门为了统计某市网友2013年11月11日在某淘宝店的网购情况,随机抽查了该市当天名网友的网购金额情况,得到如下数据统计表(如图): 若网购金额超过千元的顾客定义为“网购达人”,网购金额不超过千元的顾客定义为“非网购达人”,已知“非网购达人”与“网购达人”人数比恰好为. (1)试确定,,,的值,并补全频率分布直方图(如图(2)). (2)该营销部门为了进一步了解这名网友的购物体验,从“非网购达人”、“网购达人”中用分层抽样的方法确定人,若需从这人中随机选取人进行问卷调查.设为选取的人中“网购达人”的人数,求的分布列和数学期望.
已知函数的图像经过点. (1)求的值; (2)在中,、、所对的边分别为、、,若,且.求.
一次函数是上的增函数,,已知. (1)求; (2)若在单调递增,求实数的取值范围; (3)当时,有最大值,求实数的值.
已知平面内两点. (1)求的中垂线方程; (2)求过点且与直线平行的直线的方程; (3)一束光线从点射向(2)中的直线,若反射光线过点,求反射光线所在的直线方程.
已知直三棱柱中,,是中点,是中点. (1)求三棱柱的体积; (2)求证:; (3)求证:∥面.