如图,在Rt△ABC中,∠B=90°,,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.
如图,已知二次函数y=x2-2x+3的图象的顶点为A,且与y轴交于点C.(1)求点A与点C的坐标;(2)若将此函数的图象沿z轴向右平移1个单位,再沿y轴向下平移3个单位,请直接写出平移后图象所对应的函数关系式及点C的对应点的坐标;(3)若A(m,y1),B(m+1,y2)两点都在此函数的图象上,试比较y1与y2的大小.
某商场以每件280元的价格购进一批商品,当每件商品的售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.设每件商品的实际售价比原销售价降低了x元.(1)填表:(2)要使商场每月销售该商品的利润达到7200元,且更有利于减少库存,则该商品每件实际售价应定为多少元?
如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45°时,教学楼顶A在地面上的影子F与墙角C有13m的距离(B、F、C在一条直线上).求教学楼AB的高度.(参考数据:sin22°≈,cos22°≈,tan22°≈)
(1)已知x+y=8,x2-y2=32,则x- y= ;(2)已知x>y>0,x+y=8,x2+y2=40,求x-y的值.
解不等式组: