如图,在平行四边形ABCD中,AE∥CF,求证:△ABE≌△CDF.
(本题12分)如图,一抛物线的顶点A为(2,-1),交x轴于B、C(B左C右)两点,交y轴于点D,且B(1,0),坐标原点为O,(1)求抛物线解析式.(2)连接CD、BD,在x轴上确定点E,使以A、C、E为顶点的三角形与△CBD相似,并求出点E的坐标.(3)若点M(m,1)是抛物线上对称轴右侧的一点,点Q也在抛物线上,点P在x轴上,是否存在以O、M、P、Q为顶点的四边形是平行四边形,若存在,请直接写出点P的坐标;若不存在,请说明理由.
(12分) 如图,△ABC内接于⊙O,且AB=AC,点D在⊙O上,AD⊥AB于点A, AD与 BC交于点E,F在DA的延长线上,且AF=AE (1)求证:BF是⊙O的切线; (2)若AD=4,,求BC的长.
某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件,后来经过市场调查,发现这种商品每降低1元,其销量可增加10件。 ⑴求商场经营该商品原来一天可获利润多少元?⑵设后来该商品每件降价x元,商场一天可获利y元。①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,并通过画该函数图像的草图,观察其图象的变化趋势,结合题意写出该x取何值时,商场所获利润不少于2160元?
(本题10分)为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查. 问卷中请学生选择最喜欢的课余生活种类(每人只选一类),选项有音乐类、美术类、体育类及其他共四类,调查后将数据绘制成扇形统计图和条形统计图(如图所示). ⑴请根据所给的扇形图和条形图,填写出扇形图中缺失的数据,并把条形图补充完整;⑵如果该学校有500名学生,请你估计该学校中最喜欢体育运动的学生约有多少名?
(10分)当太阳光线与地面成45o角时,在坡度为i="1:2" 的斜坡上的一棵树AB落在坡面上的影子AC长为5米,落在水平线上的影子CD长为3米,求这棵树的高度(参 考数据,,,结果保 留两个有效数字).