(本小题满分14分)已知函数,.(1)讨论的单调区间;(2)当时,求在上的最小值,并证明.
在平面直角坐标系中,动点满足:点到定点与到轴的距离之差为.记动点的轨迹为曲线.(1)求曲线的轨迹方程;(2)过点的直线交曲线于、两点,过点和原点的直线交直线于点,求证:直线平行于轴.
从某校高二年级名男生中随机抽取名学生测量其身高,据测量被测学生的身高全部在到之间.将测量结果按如下方式分成组:第一组,第二组, ,第八组,如下右图是按上述分组得到的频率分布直方图的一部分.已知第一组与第八组的人数相同,第六组、第七组和第八组的人数依次成等差数列.频率分布表如下:
频率分布直方图如下:(1)求频率分布表中所标字母的值,并补充完成频率分布直方图;(2)若从身高属于第六组和第八组的所有男生中随机抽取名男生,记他们的身高分别为,求满足:的事件的概率.
某市准备从7名报名者(其中男4人,女3人)中选3人到三个局任副局长.(1)设所选3人中女副局长人数为X,求X的分布列和数学期望;(2)若选派三个副局长依次到A、B、C三个局上任,求A局是男副局长的情况下,B局为女副局长的概率.
为考查某种药物预防疾病的效果,进行动物试验,得到如下丢失数据的列联表:
设从没服用药的动物中任取两只,未患病数为;从服用药物的动物中任取两只,未患病数为,工作人员曾计算过. (1)求出列联表中数据的值; (2)能够以99%的把握认为药物有效吗?参考公式:,其中;①当K2≥3.841时有95%的把握认为、有关联;②当K2≥6.635时有99%的把握认为、有关联.
已知命题p:x∈[1,2],x2-a≥0,命题q:x0∈R,x+2ax0+2-a=0,若“p且q”为真命题,求实数a的取值范围.