(本题满分13分)一艘轮船在航行中每小时的燃料费和它的速度的立方成正比,已知在速度为每小时10公里时的燃料费是每小时8元,而其他与速度无关的费用是每小时128元.(1)求轮船航行一小时的总费用与它的航行速度(公里/小时)的函数关系式;(2)问此轮船以多大的速度航行时,能使每公里的总费用最少?
已知函数f(x)=ax3+3x2-6ax-11,g(x)=3x2+6x+12和直线m:y=kx+9,且f′(-1)=0. (1)求a的值. (2)是否存在k的值,使直线m既是曲线y=f(x)的切线,又是曲线y=g(x)的切线?如果存在,求出k的值;如果不存在,说明理由.
已知函数f(x)=x3+x-16. (1)求曲线y=f(x)在点(2,-6)处的切线方程. (2)如果曲线y=f(x)的某一切线与直线y=-x+3垂直,求切点坐标与切线的方程.
已知曲线y=x3+, (1)求曲线过点P(2,4)的切线方程. (2)求曲线的斜率为4的切线方程.
求下列各函数的导数: (1)y=(x+1)(x+2)(x+3). (2)y=+. (3)y=e-xsin2x.
某投资公司投资甲、乙两个项目所获得的利润分别是P(亿元)和Q(亿元),它们与投资额t(亿元)的关系有经验公式P=,Q=t,今该公司将5亿元投资于这两个项目,其中对甲项目投资x(亿元),投资这两个项目所获得的总利润为y(亿元).求: (1)y关于x的函数表达式. (2)总利润的最大值.