(本小题满分13分)已知中心在原点,焦点在轴上的椭圆过点,离心率.(1)求椭圆的方程;(2)如图,动直线与椭圆有且仅有一个公共点,求,满足的关系式;如图,、为椭圆的左、右焦点,作,,垂足分别为、,四边形的面积是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.
设函数,(1)若函数在处与直线相切;(1) ①求实数的值; ②求函数上的最大值;(2)当时,若不等式对所有的都成立,求实数的取值范围.
已知数列中各项均为正数,是数列的前项和,且.(1)求数列的通项公式 (2)对,试比较与的大小.
设△ABC的三内角的对边长分别为a、b、c,已知a、b、c成等比数列,且(Ⅰ)求角的大小;(Ⅱ)若,求函数的值域.
已知函数的图象过点P(0,2),且在点M处的切线方程为.(Ⅰ)求函数的解析式;(Ⅱ)求函数的单调区间.
已知为锐角,,,求和的值。