(本小题满分13分)在平面直角坐标系中,为坐标原点,以为圆心的圆与直线相切.(Ⅰ)求圆的方程;(Ⅱ)若直线:与圆交于,两点,在圆上是否存在一点,使得,若存在,求出此时直线的斜率;若不存在,说明理由.
如图,在四棱锥中,底面是边长为的正方形,侧面,且,若、分别为、的中点.(1)求证:∥平面;(2)求证:平面平面.(3)求四棱锥的体积.
(12分)某校为了解学生的学科学习兴趣,对初高中学生做了一个喜欢数学和喜欢语文的抽样调查,随机抽取了名学生,相关的数据如下表所示:
(1) 、用分层抽样的方法从喜欢语文的学生中随机抽取名,高中学生应该抽取几名?(2) 、在(1)中抽取的名学生中任取名,求恰有名初中学生的概率.
(12分)设(1)求函数的最小正周期和单调递增区间(2)当
选修4-5:不等式选讲(本小题满分10分)设函数,其中。(Ⅰ)当时,求不等式的解集;(Ⅱ)若不等式的解集为,求a的值。
选修4-4:坐标系与参数方程(本小题满分10分)已知极坐标的极点在平面直角坐标系的原点处,极轴与轴的正半轴重合,且长度单位相同.直线的极坐标方程为:,点,参数.(Ⅰ)求点轨迹的直角坐标方程;(Ⅱ)求点到直线距离的最大值.