(本小题满分13分)在平面直角坐标系中,为坐标原点,以为圆心的圆与直线相切.(Ⅰ)求圆的方程;(Ⅱ)若直线:与圆交于,两点,在圆上是否存在一点,使得,若存在,求出此时直线的斜率;若不存在,说明理由.
(本题满分10分)选修4 -4 :坐标系与参数方程将圆上各点的纵坐标压缩至原来的,所得曲线记作C;将直线3x-2y-8=0绕原点逆时针旋转90°所得直线记作l.(I)求直线l与曲线C的方程;(II)求C上的点到直线l的最大距离.
(本小题满分10分)选修4-1:几何证明选讲如图,AB是的直径,AC是弦,直线CE和切于点C, AD丄CE,垂足为D.(I) 求证:AC平分;(II) 若AB=4AD,求的大小.
(本小题满分12分)已知函数的零点的集合为{0,1},且是f(x)的一个极值点。(1)求的值;(2)试讨论过点P(m,0)与曲线y=f(x)相切的直线的条数。
(本小题满分12分)已知点F( 1,0),与直线4x+3y + 1 =0相切,动圆M与及y轴都相切. (I )求点M的轨迹C的方程;(II)过点F任作直线l,交曲线C于A,B两点,由点A,B分别向各引一条切线,切点 分别为P,Q,记.求证是定值.
(本小题满分12分)在正四棱锥V - ABCD中,P,Q分别为棱VB,VD的中点, 点M在边BC上,且BM: BC = 1 : 3,AB =2,VA =" 6." (I )求证CQ∥平面PAN; (II)求证:CQ⊥AP.