选修4-4:坐标系与参数方程(本小题满分10分)已知极坐标的极点在平面直角坐标系的原点处,极轴与轴的正半轴重合,且长度单位相同.直线的极坐标方程为:,点,参数.(Ⅰ)求点轨迹的直角坐标方程;(Ⅱ)求点到直线距离的最大值.
已知函数(),其图象相邻两条对称轴之间的距离等于. (1)求的值; (2)当时,求函数的最大值和最小值及相应的值.
如图,在平面直角坐标系中,、分别是椭圆的顶点,过坐标原点的直线交椭圆于、两点,其中在第一象限.过作轴的垂线,垂足为.连接,并延长交椭圆于点.设直线的斜率为. (Ⅰ)当直线平分线段时,求的值; (Ⅱ)当时,求点到直线的距离; (Ⅲ)对任意,求证:.
已知函数. (Ⅰ)求函数的单调区间; (Ⅱ)若在内恒成立,求实数的取值范围.
定义在上的函数同时满足以下条件:①函数在上是减函数,在上是增函数;②是偶函数;③函数在处的切线与直线垂直. (Ⅰ)求函数的解析式; (Ⅱ)设,若存在使得,求实数的取值范围.
某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (Ⅰ)求的值; (Ⅱ)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大.