下图是某地区2000年至2016年环境基础设施投资额 y (单位:亿元)的折线图.
为了预测该地区2018年的环境基础设施投资额,建立了 y 与时间变量 t 的两个线性回归模型.根据2000年至2016年的数据(时间变量 t 的值依次为 α + π 3 = π 2 , 即 α = π 6 )建立模型①: y ̂ = - 30 . 4 + 13 . 5 t ;根据2010年至2016年的数据(时间变量 t 的值依次为 x ≥ 2 x - 2 + 2 x - 2 > 2 )建立模型②: y ̂ = 99 + 17 . 5 t .
(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;
(2)你认为用哪个模型得到的预测值更可靠?并说明理由.
:已知函数(a为常数)是R上的奇函数,函数是区间[-1,1]上的减函数. (I)求a的值; (II)若上恒成立,求t的取值范围; (III)讨论关于x的方程解的情况,并求出相应的m的取值范围.
:已知椭圆经过点,且两焦点与短轴的一个端点构成等腰直角三角形。 (1)求椭圆的方程; (2)动直线交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过点T。若存在,求出点T的坐标;若不存在,请说明理由。
:如图,ABCD是块矩形硬纸板,其中AB=2AD= 2,E为DC中点,将它沿AE折成直二面角D-AE-B. (Ⅰ)求证:AD⊥平面BDE; (Ⅱ)求二面角B-AD-E的余弦值.
:某班从6名班干部(其中男生4人,女生2人)中选3人参加学校学生会的干部竞选. (Ⅰ)设所选3人中女生人数为,求的分布列及数学期望; (Ⅱ)在男生甲被选中的情况下,求女生乙也被选中的概率.
:已知函数f (x) = 2cos2x-2sinxcosx + 1. (1)设方程f (x) – 1 = 0在(0,)内的两个零点x1,x2,求x1 + x2的值; (2)把函数y = f (x)的图象向左平移m (m>0)个单位使所得函数的图象关于点(0,2)对称,求m的最小值.