(本小题满分14分)已知圆心在轴上的圆过点和.(1)求圆的方程;(2)求过点且与圆相切的直线方程;(3)已知线段的端点的坐标为,端点在圆上运动,求线段的中点N的轨迹.
在数列中,已知.(1)求数列的通项公式;(2)求证:数列是等差数列;(3)设数列满足的前项和.
某公司有男职员45名,女职员15名,按照分层抽样的方法组建了一个4人的科研攻关小组.(1)求某职员被抽到的概率及科研攻关小组中男、女职员的人数;(2)经过一个月的学习、讨论,这个科研攻关组决定选出两名职员做某项实验,方法是先从小组里选出1名职员做实验,该职员做完后,再从小组内剩下的职员中选一名做实验,求选出的两名职员中恰有一名女职员的概率;(21)试验结束后,第一次做试验的职员得到的试验数据为68,70,71,72,74,第二次做试验的职员得到的试验数据为69,70,70,72,74,请问哪位职员的实验更稳定?并说明理由.
如图所示,平面ABCD,四边形ABCD为正方形,且分别是线段PA、PD、CD、BC的中点.(1)求证:BC//平面EFG;(2)求证:平面AEG;(3)求三棱锥E-AFG与四棱锥P-ABCD的体积比.
在△ABC中,角A,B,C所对的边分别为,且满足,.(1)求的面积;(2)若、的值.
已知函数的切线方程为.(1)求函数的解析式;(2)设,求证:上恒成立; (3)已知.