(本小题满分12分)如图,在四棱锥中,平面,,四边形满足,且,点为中点,点为边上的动点,且.求证:平面平面;是否存在实数,使得二面角的余弦值为?若存在,试求出实数的值;若不存在,说明理由.
如图,已知函数f(x)=Asin(ωx+φ)(A>0,|φ|<)图像上一个最高点坐标为(2,2),这个最高点到相邻最低点的图像与x轴交于点(5,0).(1)求f(x)的解析式;(2)是否存在正整数m,使得将函数f(x)的图像向右平移m个单位后得到一个偶函数的图像?若存在,求m的最小值;若不存在,请说明理由.
(Ⅰ)在三角形,G是三角形的重心,求.(Ⅱ)已知向量,求x。
如图,已知OPQ是半径为1,圆心角为的扇形,C是扇形弧上的动点,ABCD是扇形的内接矩形,记,求当角取何值时, 矩形ABCD的面积最大?并求出这个最大值.
已知函数 (Ⅰ)若求函数的值;(Ⅱ)求函数的值域。
如图,从参加环保知识竞赛的学生中抽出名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛的及格率(分及以上为及格)