在一个口袋中有5个小球,其中有两个是白球,其余为红球,这些球的形状、大小、质地等完全相同,在看不到小球的条件下,从袋中随机地取出一个小球.(1)求取出的小球是红球的概率;(2)把这5个小球中的两个都标号为1,其余分布标号为2、3、4,随机地取出一个小球后不放回,再随机地取出一个小球.利用树状图或列表的方法,求第二次取出小球标号大于第一次取出小球标号的概率.
如图所示,在□ABCD中,对角线AC、BD交于点O,直线EF经过点O交BC于F、交AD于E,且AF⊥BC.求证:四边形AFCE是矩形.
如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.
如图,□ABCD中,点O是AC与BD的交点,过点O的直线与BA、DC的延长线分别交于点E、F.(1)求证:△AOE≌△COF.(2)连接EC、AF,则EF与AC满足什么条件时,四边形AECF是矩形?并说明理由.
在Rt△ABC中,∠ACB=90°,AB=2AC,如图所示,求∠A、∠B的度数.
如图(1),在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其他条件不变,如图(2),如果∠ABC=58°,那么∠DPE=________度.