解方程
(本题满分14分)如图,将一次函数的图象上一点A(a,b),沿竖直方向向上移动6个单位,得到点B,再沿水平方向向右移动8个单位,得到点C.以AC为直径作圆E,设垂直于y轴的直线DT与圆E相切于点D.(1) 求证:点C在一次函数的图象上;(2) 求三角形ADC的面积;(3) 当点D在x轴上时,求点A的坐标.
(本题满分14分)(1) 如图所示的网格坐标系中,顶点在格点上的矩形ABCD被分割成四块全等的小矩形①、②、③、④,并经过一次或二次变换拼成正方形A1B1C1D1.试写出小矩形从①→⑤、③→⑦一种变换过程;(2) 对任意一个矩形按(1)的方式实施分割、变换后拼成正方形.试探究矩形ABCD的周长与面积分别与正方形A1B1C1D1的周长与面积的大小关系?并用代数方法验证你的结论.
(本题满分14分)如图是某市一条河上一座古拱挢的截面图,拱桥桥洞上沿是抛物线形状,抛物线拱桥处于正常水位时水面宽AB为26m,当水位上涨1m时,抛物线拱桥的水面宽CD为24m.现以水面AB所在直线为x轴,抛物线的对称轴为y轴建立直角坐标系.(1) 求出抛物线的解析式;(2) 经过测算,水面离拱桥顶端1.5m时为警戒水位.某次洪水到来时,小明用仪器测得水面宽为10m,请你帮助小明算一算,此时水面是否超过警戒水位.
(本题满分12分)已知AB是⊙O的一条弦,CD是⊙O的直径,CD⊥AB,垂足为K.现取一块三角板,把它的一个锐角顶点固定在点C处,该锐角的两边(从左到右)与直线AB和圆分别相交于E、F和G、H.(1) 若∠C的一边过圆心,请选择图10-1或图10-2所示,求证: △CEF∽△CHG;(2) 若∠C的边不过圆心,在图10-3中补全一种示意图,请你观察所画的图形,并判断(1)中的结论是否仍然成立?若成立,给予证明;若不成立,请说明理由.
(本题满分12分)节假日,小明和哥哥在水族馆看完海洋动物后,参加了出口处的抽奖活动.游戏的规则如下:每张门票只可摸球一次,每次从装有大小形状相同的2个白球和1个红球的盒子中,随机摸出一个球,若摸出的是红球,则获得一份奖品.(1) 求每次摸球中奖的概率?(2) 小明想:我有二张票,中奖的概率就翻一倍.你认为小明的思考正确吗?请用列表法或画树形图分析说明.