如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形.(1)连结BE,CD,求证:BE=CD;(2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′.①当旋转角为 度时,边AD′落在AE上;②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,△BDD′与△CPD′全等?并给予证明.
解方程组
如图所示的二次函数的图象中,刘星同学观察得出了下面四条信息:(1);(2)c>1;(3)2a-b<0;(4)a+b+c<0。你认为其中错误的有( )
在平面直角坐标系xOy中,已知 A(-2,0),B(2,0),AC⊥AB于点A,AC=2,BD⊥AB于点B,BD=6,以AB为直径的半圆O上有一动点P(不与A、B两点重合),连接PD、PC,我们把由五条线段AB、BD、DP、PC、CA所组成的封闭图形ABDPC叫做点P的关联图形,如图1所示. (1)如图2,当P运动到半圆O与y轴的交点位置时,求点P的关联图形的面积. (2)如图3,连接CD、OC、OD,判断△OCD的形状,并加以证明. (3)当点P运动到什么位置时,点P的关联图形的面积最大,简要说明理由,并求面积的最大值.
问题:在△ABC中,AB=AC,∠A=100°,BD为∠B 的平分线,探究AD、BD、BC之间的数量关系. 请你完成下列探究过程: (1)观察图形,猜想AD、BD、BC之间的数量关系为. (2)在对(1)中的猜想进行证明时,当推出∠ABC=∠C=40°后,可进一步推出∠ABD=∠DBC=度. (3)为了使同学们顺利地解答本题(1)中的猜想,小强同学提供了一种探究的思路:在BC上截取BE=BD,连接DE,在此基础上继续推理可使问题得到解决.你可以参考小强的思路,画出图形,在此基础上对(1)中的猜想加以证明.也可以选用其它的方法证明你的猜想.
在平面直角坐标系xOy中,二次函数的图象经过(,0)和(,0)两点. (1)求此二次函数的表达式. (2)直接写出当<x<1时,y的取值范围. (3)将一次函数 y=(1-m)x+2的图象向下平移m个单位后,与二次函数图象交点的横坐标分别是a和b,其中a<2<b,试求m的取值范围.